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Abstract

Standard word form prediction is the task of predicting the target word-form given
its base-form and morpho-syntactic tags. The typical use cases include automatic text
correction, machine translation, and corpora enrichment.

The aim of our thesis is to create an infection prediction model that predicts the target
inflection from the input base-form and the sentence context instead of relying on other
additional inputs like morpho-syntactic tags.

In our work, we constructed a Czech dataset for the training, validation, and evalu-
ation of the context-aware prediction of inflectional forms. Furthermore, we proposed
two approaches for the prediction task. Finally, we performed both automatic and hu-
man evaluations of the proposed models.

Keywords: Inflection, Morphology, Transformers, Encoder-Decoder, Sequence-to-Sequence,
Natural Language Processing, Neural Networks.





Abstrakt

Standardní formulace úlohy predikce slovních tvarů je predikce cílového tvaru slova,
když je zadaný základní tvar a jeho morfo-syntaktické značky. Typické využití predikce
slovních tvarů zahrnuje automatickou opravu textu, strojový překlad a obohacování kor-
pusů.

Cílem naší práce je vytvořit model, který predikuje slovní tvar ze zadaného základ-
ního tvaru a kontextu věty namísto spoléhání se na další vstupy, jako například na morfo-
syntaktické značky.

V naší práci jsme zkonstruovali českou datovou sadu pro trénink, validaci a vyhodno-
cení kontextově informované predikce inflexních forem. Dále jsme navrhli dva přístupy
řešící zkoumaný problém. Na závěr jsme provedli automatické i lidské hodnocení navr-
hovaných přístupů.

Klíčová slova: Inflekce, Tvarosloví, Transformers, Encoder-Decoder, Sequence-to-Sequence,
Zpracování přirozeného jazyka, Neuronové sítě
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Chapter 1

Introduction

Inflectional word-form prediction is a task in Natural Language Processing (NLP) [7]
where we predict a target word-form given the base-form. The usages of inflectional
word-form prediction include automatic text correction, machine translation, and cor-
pora enrichment.

In the traditional formulation of the task, the model has access to the base-form of
the target word and its morpho-syntactic tags. The example input in the Czech language
considering the traditional approach could look somehow like this:

“Praha <Noun><F><Sg><Locative>”.

Where string “Praha” is the Czech base form of the word Prague, and the accompanying
morpho-syntactic tags describe part-of-speech, gender, number, and case.

While the task itself is not thoroughly explored, mainly because of the weakly in-
flected nature of English, there were several approaches applied to the inflection predic-
tion task. The first approaches use traditional n-gram models over fully inflected word-
forms [16]. The latter methods try to utilize morpho-syntactic features to predict the
target form. Some of the systems do so by first predicting the morpho-syntactic features
and inputting the predicted features with base-form to rule-based generators [16]. The
others learn inflectional paradigms from publicly available inflection tables and directly
predict the target word-forms using the learned paradigms on base-form and morpho-
syntactic tags [26].

In the most recent approaches, authors try to move away from using hand-crafted
rules, features, or transducers and prefer to utilize encoder-decoder architectures [36;
6]. The first attempt uses the character sequence-to-sequence LSTM encoder-decoder
model [15]. Others try to build on this idea by adding hard monotonic attention [2].
However, all of the previously mentioned approaches do not take into consideration the
context of the sentence.

Our thesis aims to leverage the sentence context for word-form prediction instead
of using morpho-syntactic tags. To achieve the goal, we first need to design a suitable
model. Afterward, we prepare a Czech dataset suitable for the training and experiments.
Finally, we evaluate the proposed model and discuss the results. As an illustration, we
aim to predict the correct inflection of base-form "Praha" given only the context of the
sentence:

“Byl jsem v #Praha”.

Which in translation means:
“I was in #Prague”.

With such an approach, we aim to make word-form prediction more user-friendly by
avoiding non-intuitive morpho-syntactic tags and expecting that word-form can be de-
rived from the sentence context. Another reason for choosing a context-aware approach is

9



CHAPTER 1. INTRODUCTION

the recent success of transformer architectures in the NLP field. Transformers surpassed
RNNs in context and long-term dependency encodings, and multiple Transformer based
models achieved state-of-the-art results in various NLP tasks [37]. Moreover, the Hug-
gingface Transformers library makes the usage of Transformers user-friendly [38].

The rest of the thesis is organized as follows. In Chapter 2, literature on inflection
prediction methods is discussed, as well as their application in NLP.

Chapter 3 and Chapter 4 are devoted to the explanation of theoretical concepts used
in the thesis. With Chapter 3 focusing on the linguistic terms and Chapter 4 focusing
on the technical terms and algorithms .

In Chapter 5 we formulate the problem of context-aware inflectional word-form pre-
diction. Moreover, we provide its use cases and motivation for selecting the topic.

Chapter 6 is devoted to the description, implementation, and evaluation of the pro-
posed approaches.

Finally, ?? concludes the thesis and discusses some possible directions to be investi-
gated in the future.

10



Chapter 2

Related Work

2.1 Modeling Inflection and Word-Formation in SMT

One of the main tasks where inflection and word-form models are used is statistical
machine translation (SMT) [20]. The issue is word-form data sparsity which especially
shows when translating to a morphologically rich target language. Considering that,
Fraser et al. showed that first translating to a base-form representation and then inflect-
ing to the correct word-form improves SMT systems’ performance [16].

The authors experimented with several models using surface forms and linguistic
features to predict target word forms. The procedure was first to translate English words
to German stems and then to generate the correct inflected word form. The translation
was conducted from English to German, and they used the 2009 ACL Workshop on Ma-
chine Translation dataset1. They also enriched the stems with handcrafted inflectional
markup. For example, nouns were marked with gender and number; prepositions were
marked with the case of their object, etc.

They presented in total five solutions for the inflection problem. The first two ap-
proaches are n-gram models over fully inflected surface forms. The inputs of the first n-
gram model are pure surface forms of stems without additional linguistic features. The
second approach additionally has access to the case, number, and gender if the features
are present.

The rest of the models are linguistic feature prediction systems. Predicted linguistic
features and stem of the word are used as an input to SMOR inflection generator [32]. The
models are standard language models where tokens are represented as part-of-speech
(POS) tags and linguistic features. The first model uses a single-joint prediction of all
features, while the second one predicts the features separately. The last one differs only
in the usage of conditional random fields (CRFs) [21] for each linguistic feature.

1http://www.statmt.org/wmt09/translation-task.html
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CHAPTER 2. RELATED WORK

2.2 Inflection Generation as Discriminative String Transduction

In the second analyzed approach [26], the authors were inspired by the works of Durrett
& Denero [14], and Ahlberg et al. [19]. The common topic of the previously mentioned
works is the generation of inflected forms based on a large number of training inflections
tables from the Wiktionary dataset. While the latter two are more focused on generating
all forms in the inflection table given the base form [26] focus on the correct inflection
form provided the base form and abstract inflectional tag.

The main idea is that different lemmas tend to have similar inflectional patterns
called paradigms. These paradigms can be learned from the inflectional tables present in
Wiktionary and later used to generate inflection forms from unseen data. The example
of an inflectional table can be seen in Figure 2.1.

The argument for using Wiktionary inflectional tables is that the tables are publicly
available for multiple languages and many words, while on the other hand, it is challeng-
ing to create handcrafted morphological generators from scratch.

Figure 2.1: A partial inflection table for the German verb atmen “to breathe” in Wik-
tionary [26]

Their approach can be divided into three following subtasks.

2.2.1 Table alignment

The first step is to align related inflected forms in a table. One of the ways how to do so is
to align all related inflected forms to a base form. The authors use an EM-driven many-
to-many aligner where they look for small multi-character operations. Whereas Durrett
& Denero use paradigm-aware, position-dependent edit distance [14], and Ahlberg et al.
use finite-state-automata for multiple longest common subsequence alignment [19].

2.2.2 Rule extraction

The second step is to extract the rule given aligned table. Considering this, Durrett &
Denero extract a rule for each changed span which creates vertical rules [14]. On the
other hand, Ahlberg et al. take a different approach where they replace each unchanged
span with a variable [19]. As a consequence, the latter approach makes a single rule for
a whole table. While these resulting rules are larger than vertical rules and easier to
interpret, they come with the downside of being less flexible.

With these approaches in mind, Nicolai et al. instead choose an even more flexible
strategy where they extract a rule for each atomic, multi-character transformation. We
can see the differences of described methods in Figure 2.2

12



CHAPTER 2. RELATED WORK

Figure 2.2: Competing strategies for rule extraction: (a) an aligned table; (b) a table-level
rule; (c) vertical rules; (d) atomic rules. Dollar sign ($) is a word boundary marker. [26]

2.2.3 Rule selection

The last in the inflection generation pipeline is to pick the rules to use. Ahlberg et al. are
using the longest suffix match against an index that associates rules with base-forms. Ad-
ditionally, they use the corpus frequency of possible inflection options for reranking [19].
Durrett & Denero are using a semi-Markov model with features characterizing n-gram
character context [14]. Similarly to Durrett & Denero, the authors used the semi-Markov
model for rule selection. However, they also took inspiration from Ahberg et al. and
used the corpus for reevaluation.

13



CHAPTER 2. RELATED WORK

2.3 Morphological Inflection Generation Using Character Sequence
to Sequence Learning

Unlike in the previous works, Faruqui et al. model the inflection generation task as a
character sequence to sequence learning problem [15]. The comparison of their approach
with the previously discussed methods can be seen in Figure 2.3

The authors present a language-independent neural encoder-decoder model that can
be trained in both a supervised and semi-supervised manner. Similarly to the previous
approach, the model is trained on Wiktionary data, precisely on pairs of root form and
target inflected form. The authors also improved the performance with unlabeled data
by integrating a character language model trained on the target language’s vocabulary.

The supervised model is LSTM encoder-decoder model [18]. The loss function is
negative log-likelihood, and the optimizer is AdaDelta [41]. They evaluate two different
settings of the model. The first one is called Factored Model, where they train a single
model for each inflection type. The second is the Joint Model, where the information of
how the lemma inflects across all other inflection types is shared during the training by
having the same encoder across all inflection models.

They also present semi-supervised models where they use the target language’s lan-
guage model to improve the predictions. The first setting is that they use the same super-
vised model as described before. However, in the end, they use beam search and rerank
the possible outputs using the trained language model and other features. In the second
semi-supervised setting, they change the loss function by accounting for the probability
of observing output word given the history based on the learned language model. The
last setting is an ensemble of two previously described settings.

Figure 2.3: Comparison of strategies for rule extraction with character sequence to se-
quence model [15]: (a) an aligned table; (b) a table-level rule [19]; (c) vertical rules [14];
(d) atomic rules. [26]
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CHAPTER 2. RELATED WORK

2.4 Morphological Inflection Generation with Hard Monotonic
Attention

Similarly to the previous approach [2] also use the encoder-decoder model. However,
the authors propose solving the requirement of extensive training sets by adding a dedi-
cated control mechanism to the encoder-decoder neural network. The suggested control
mechanism tries to model natural monotonic alignment between the input and output
character sequence. The authors work with the assumption that an almost monotonic
alignment between the input and output character sequence is commonly present in the
inflection task, especially in the case of languages with concatenative morphology.

The model consists of the bi-directional encoder RNN, the dedicated control mech-
anism, and the decoder. In each step of decoding, the model either makes a prediction
based on a current input state or shifts the control mechanism pointer by “step” action
so that the model attends to the next input state in the following decoding step. An
illustrated example can be seen in Figure 2.4

Figure 2.4: The hard attention network architecture. [2]

The hard monotonic attention model performs on par or even better than previous
neural and non-neural approaches while learning using fewer training examples. An-
other interesting fact is that the model enables decoding in linear time with respect to
the output sequence. All thanks to the fact that with hard monotonic attention decoder
attends to a single input at a time, and the model therefore not require compressing the
input sequence to a single fixed-sized vector.
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Chapter 3

Linguistic concepts

3.1 Morphology

The term morphology originates from greek “morphe”, meaning form, and “logia”, mean-
ing the study of [3]. Morphology is a part of is part of multiple scientific fields, such as
linguistics, biology. However, no matter what the scientific field is, morphology is still
the study of shapes, processes, or forms.

In linguistics, morphology refers to a discipline that focuses on words, their internal
structure, and how they are formed. We can distinguish between two types of morpholo-
gies: inflectional and derivational. Derivational morphology is a morphology that creates
new lexemes. That means it focuses on how to form new words given the existing ones.
On the other hand, an inflectional morphology does not create a new lexeme but pro-
duces grammatical variants of the same lexeme instead.

The basic unit of morphology is a morpheme. It is the smallest unit having both
expression and meaning. It is an abstract, systemic unit. It is determined based on
syntagmatic and paradigmatic relations to adjacent units. A specific realization of a
morpheme sign is a morph. If a morpheme has several different realizations, they are
allomorphs. Thus, we can define a morpheme as a set of formally similar morphs with
the same meaning, appearing in different word forms. According to the function, divide
morphemes into lexical and grammatical.

The basic lexical morpheme carrying the meaning of the word is the root. Accord-
ing to the position, we divide non-root morphemes or affixes into pre-fixes (in front of
the root), interfixes (between two roots), and suffixes (behind the root). The derivative
morpheme located at the end of a word- form (after all grammatical suffixes) is called a
postfix [29].

If we take a closer look at English inflection, we can observe that English is a weakly
inflected language. Regarding that, most of the inflection in English is done with affixes.
For example, plural number and third-person singular are expressed by suffix -s (as in
“dog”→ “dog-s”). The most common regular English inflection rules can be summarized
in the Table 3.1. There are, of course, words that do not follow these rules. However,
even if we count these irregularities like vowel alternations, invariant words, irregular
adjectives, verbs, or adverbs, we can still see that one English word does not have many
grammatical variants. We can see the comparison with the Czech words in Figure 3.1.

Now let us consider the Czech language instead. In Czech, a noun can have more than
seven distinct variants only in the singular number. That clearly shows that Czech is a
highly inflected language. In the linguistics of Czech, morphology is traditionally un-

17



CHAPTER 3. LINGUISTIC CONCEPTS

Table 3.1: English inflection rules

Affix Grammatical category Mark Part of speech
-s Number plural nouns
-’s/’/s Case genitive nouns and pronouns
-self Case reflexive pronoun
-ing Aspect progressive verbs
-en/-ed Aspect perfect non-progressive verbs
-ed Tense past (simple) verbs
-s Person, number, aspect, tense 3rd person singular present verbs
-er Degree of comparison comparative adjectives
-est Degree of comparison superlative adjectives

derstood only as inflected morphology, while the so-called derivative morphology (word
formation) falls into lexicology [1].

Figure 3.1: Comparison of English and Czech inflection [27]

As we mentioned earlier, inflectional morphology deals with those morphs that ex-
press grammatical meanings. On the other hand, lexicology is of interest to those that
express lexical, factual meanings. Although the line between inflective morphology and
word formation is not clear, the focus of our word-form approach will be predicting
word-forms to express grammatical meanings and not the formation of new words.

18



CHAPTER 3. LINGUISTIC CONCEPTS

3.2 Stemming and Lemmatization

In our inflectional word-form prediction task, we will need a base form of a word to
serve as a model input together with a contextual sentence. There are two methods that
identify a canonical word-form given a set of related word-forms of one word: stemming
and lemmatization [33].

Stemming is a heuristic that cuts off the ends of the various word-forms of a word
until reaching a common sequence of characters that serves as a base form. The resulting
stem does not necessarily need to carry meaning and does not have to equal to a root.
Moreover, a stemmer does not work with a knowledge of context when deriving the stem
of a single word. Consequently, it cannot discriminate between words that have different
meanings depending on the part of speech. However, stemmers are typically easier to
implement and run faster than lemmatizers, and the reduced accuracy may not matter
for some applications.

In our work, however, we will rely on lemmas instead of stems as base forms. Unlike
stemming, lemmatization always returns a meaningful base form that is a valid dictio-
nary form of a word. To be able to do so, lemmatizers use vocabularies and morphological
analysis of words. As a consequence, lemmatization is naturally more computationally
expensive compared to stemming.

19





Chapter 4

Technical concepts

4.1 Recurent Neural Networks

Traditional language models [34] for sequential data are based on predicting the current
word on n previous words. While this assumption was proven to work well in practice,
it does not show how the word is conditioned in reality. Moreover, as a consequence of
this assumption, the memory requirements grow significantly as the number of previous
words that a current prediction depends on grows.

Recurrent neural networks (RNNs) were introduced as a model with a theoretical ca-
pability to take all previous information into account. RNNs are architecturally suitable
for NLP problems since we assume that text or speech has sequential nature. The simple
RNN model is illustrated in figure 4.1.

In RNN, the output does not depend only on current input but also on the previous
outputs. Moreover, an important design fact is that weights are shared through differ-
ent time steps. Furthermore, compared to the traditional language models, the memory
requirements do not grow with the number of previous words but only depend on the
number of predicted words.

The following equations hold for the calculation of the hidden state and the output.

ht = tanh(Uxt +Vht−1)

ot = sof tmax(Wht)

RNNs have problems with learning long-term dependencies [28] because of the van-
ishing gradient [17]. The problem of vanishing gradient appears similarly like in the
case of standard feed-forward networks as the unfolded RNN is the same as feed-forward
network Figure 4.1. That is why RNN architectures like GRUs and LSTMs, which were
specially designed to persist the long-term dependencies, were introduced.

Figure 4.1: Recurrent neural network diagram [10]
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CHAPTER 4. TECHNICAL CONCEPTS

Figure 4.2: Gated recurrent unit [12]

4.1.1 Gated Recurrent Units

Gated Recurrent Units (GRUs), which were introduced in 2014 by Chun et al. [8] are a
simplification of LSTMs. Compared to only the hyperbolic tangent nonlinearity present
in the simple RNN unit, GRUs add two gates that influence how a neuron deals with
current input and previous information. We can see an illustration in figure Figure 4.2.

The two gates are called update gate and reset gate, and they have following almost
similar equations.

zt = σ (W zxt +U zht−1)

rt = σ (W rxt +U rht−1)

The following equations hold for the calculation of new memory content and final
memory content.

h̃t = σ (Wxt + r ◦Uht−1)

ht = zt ◦ht−1 + (1− zt) ◦ h̃t

Based on the equations, we can see that the gates differ in weight matrices, but more
importantly, they differ in usage.

The reset gate controls how much past information should be forgotten. Intuitively if
all values in r get close to zero, we ignore the data from the previous hidden state because
it would be irrelevant in the future.

The update gate controls the amount of past information that needs to be passed to
the output. We can see that if all values in z get close to one, we copy the information from
the previous step, and the vanishing gradient has no space to cause trouble. Furthermore,
we can observe that GRUs are a generalization of RNNs because if r is 1 and z is 0 then
the ht equation for GRUs simplifies to the ht equation for RNNs.

LSTM

Long short-term memory [18] (LSTMs) were introduced already in 1997 and are the pre-
decessors of GRUs. LSTMs introduce three gates instead of two, which were introduced
in GRUs. We refer to these gates as input, forget and output gates. Moreover, they also
have one additional state, which is called a cell state. The following equations holds for
the LSTMs.

it = σ (W ixt +U iht−1)

ft = σ (W f xt +U f ht−1)
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Figure 4.3: Long short-term memory unit [11]

ot = σ (W oxt +U oht−1)

c̃t = tanh(W cxt +U cht−1)

ct = ft◦ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

The forget gate controls the influence of the previous results on the current predic-
tions. The input gate tells us how much we should care about the current state. This is
a more robust mechanism than the update gate in GRUs as we have two different means
to control the memory cell instead of a single update gate.

Another difference between LSTMs and GRUs is that LSTMs have an additional cell
state. The reason is that LSTMs also control how much information they want to expose
to the output. In GRUs, the output is equal to the final memory state, whereas, in LSTMs,
the output is controlled by the output gate, which decides what information is relevant
for the current state.
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4.2 Encoder-Decoder architecture

Many NLP tasks like machine translation, text summarization, and even our inflection
generation can be modeled as a sequence-to-sequence problem. The Encoder-Decoder
architecture was introduced in [36; 6] as an alternative to DNNs, which despite their
power and flexibility, struggle with sequence learning.

The main challenge for DNNs is that the dimensionality of the inputs and the outputs
is fixed and must be known a-priori. However, as described before, many NLP problems
are best represented with sequences whose lengths are not known a-priori. All these
factors were the motivation behind the origin of Encoder-Decoder as a general approach
to sequence learning.

The model consists of two parts, as the name suggests — an encoder and a decoder.
The encoder takes a variable-length sequence as an input and outputs a fixed-length
vector. The decoder takes the encoded fixed-length vector and decodes it into a variable-
length sequence. In the original architecture, both the encoder and the decoder are RNNs
trained to maximize the conditional probability of the target sequence given an input
sequence.

The encoder RNN sequentially processes the input sequence. After processing the
last input sequence item, the last hidden state returns a vector that captures the input
sequence representation. This vector is referred to as the context.

The decoder is also an RNN that predicts one output symbol at a time given the
previously predicted symbol, hidden state, and the context vector from the encoder. The
architecture works on the same principles when RNN units are replaced with LSTM or
GRU ones.

Figure 4.4: Encoder-Decoder architecture

24



CHAPTER 4. TECHNICAL CONCEPTS

4.3 Attention

Encoder-Decoder architecture tries to solve sequence by mapping arbitrary long input
sequence to a fixed size context vector and then decoding to the arbitrary long input se-
quence. Although this architecture serves as a universal approach to sequence learning,
it has natural drawbacks. One problem is that all the input sequence information must
be captured in a fixed size vector no matter how long the sequence is. Another problem is
that RNNs struggle to capture long-term dependencies. Both of these problems are diffi-
cult to solve with the increasing length of input sequences, and the attention mechanism
came as a proposed solution in [4; 24].

Figure 4.5: attention architecture

The main idea of the attention mechanism is to encode the input sequence into mul-
tiple vectors and let the decoder choose what is relevant instead of encoding the input
sequence into one fixed-length vector. We can separate the attention models into two
types—global and local. These types differ only in the way the context vector is derived.
Specifically, the difference is considering either all or only some hidden states of the en-
coder.

Other than that, both types share the same architecture. Both calculate attentional
hidden state from hidden state ht and context vector ct.

h̃t = tanh(Wc[ct;ht])

The final output symbol is predicted based on the conditional probability

p(yt |y<t ,x) = sof tmax(Wsh̃t)

4.3.1 Global attention

As we previously stated, the global attentional [24] model considers all the hidden states
of the encoder when deriving the context vector ct. Firstly, it assigns a score to each of
the hidden states. The scores are then normalized by using the softmax function so that
they represent a probabilistic distribution. The normalized score for each source hidden
state serves as a weight. The resulting context vector is computed as a weighted average
over all the source hidden states.
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Figure 4.6: Global attention [24]

Local attention

An obvious drawback of global attention is that it has to attend to all inputs in the source
sequence no matter the length. The local attentional mechanism [24] aims to tackle this
problem by focusing only on a subset of the source positions during the target generation.

The model is inspired by the work of Xu et al. [40] where they used so-called soft and
hard attentional models. The soft attention model considers all input hidden states and
assigns weights to them. The previously mentioned global attention can be considered
as a soft attention model. On the other hand, the hard attention considers only some
hidden source states when generating a context vector. However, the problem with the
hard attentional model is that it is non-differentiable and requires using more advanced
techniques during the training.

Instead of choosing between soft and hard attention, the authors go somewhere in
a middle way. Their local mechanism focuses on a fixed-size context window. By using
this approach, they avoid the expensive computation of the global version. Moreover, the
model is still differentiable and easier to train compared to the hard attention.
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Figure 4.7: Local attention [24]
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4.4 Transformer architecture

Thanks to the addition of the attention mechanism, the encoder-decoder with attention
surpassed the original encoder-decoder architecture and was considered the state-of-the-
art for sequence learning. Despite the success, the usage of attention together with recur-
rent networks still preserves the problems that inherently come with sequential nature.
In [37] authors proposed the Transformer architecture, which gets rid of recurrence and
relies only on attention mechanism. Moreover, the model also allows parallelization.
Transformers created a breakout in the NLP field and became state-of-the-art for many
NLP tasks.

Figure 4.8: Transformer architecture [37]

From a high point perspective, the transformer model still follows encoder-decoder
architecture. However, this time there are no recurrent networks. The encoding com-
ponent is a stack of identical encoders. Each encoder layer consists of two sub-layers.
The first is a multi-headed self-attention layer, and the second one is a fully connected
feed-forward network. Moreover, residual connection followed by layer normalization is
applied to each of the sub-layers.

Similar to the encoding component, a stack of identical decoder layers form the de-
coding one. The decoder differs from the encoder by an additional sub-layer between
the multi-headed attention layer and the feed-forward layer. Moreover, the self-attention
sub-layer is modified so that the predictions for position i can attend only to positions
less than i.

Overall, the authors brought many new ideas that improved state of the art for se-
quence learning. They replaced RNNs with self-attention. Furthermore, they introduced
scaled dot-product attention and multi-headed attention, and parameter-free positional
encoding.
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Scaled Dot-Product Attention

The authors introduced Scaled Dot-Product Attention. The function maps a query and a
set of key-value pairs to an output. Despite the different notations, the main principles
of attention are similar to what was described in [4; 24]. The output is still computed
as a weighted sum of hidden states, in this case, values. The weights depend on the
compatibility of the query with the corresponding key.

Specifically, the input consists of queries and keys of dimension dk , and values of di-
mension dv . The scores are computed as dot products of the query with all keys and nor-
malized dividing by

√
dk . Afterward, the softmax function is applied so that we get the

final weight distribution. The output of the attention layer is a weighted sum of weights
with values. However, the great thing is that all of these operations can be written in
matrix form, making the computation more effective.

Attention(Q,K,V ) = sof tmax(
QKT√
dk

)V

Multi-Headed Attention

Another novel idea introduced in the paper is Multi-Headed Attention. The idea is to
apply attention function h times on linearly projected queries, keys, and values instead
of only once. The idea is analogical to the application of multiple smaller convolutional
filters to the image in CNNs. By doing so, the model can learn multiple input representa-
tions where each can focus on a different aspect. These representations are concatenated
and multiplied by a final weight matrix which results in the final output representation.

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)WO

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )

WQ
i ,W

K
i ∈ R

dmodel×dk ,W V
i ∈ R

dmodel×dvandWO
i ∈ R

hdv×dmodel

Positional Encoding

The last important idea that we will talk about is positional encoding. Thanks to that,
the authors were able to get rid of recurrence but still make use of the information about
the order of the sequence. They add positional encodings to the input embeddings at the
bottom of the encoder and decoder components. In the paper, the authors propose the
following positional encodings.

P E(pos,2i) = sin(pos/100002i/dmodel )

P E(pos,2i+1) = cos(pos/100002i/dmodel )

The intuition behind those functions is that sin and cos are periodical functions,
which makes the encoding of particular positions independent of the length of the se-
quence. If we would fix all the parameters except of pos we can see that the positional
embedding for the certain position is independent on the sequence length. However,
we can also observe that because of the periodicity, some positions would be encoded
similarly. This problem is solved by the i parameter. We can see that each of the embed-
ding dimensions is encoded differently for the positions that would otherwise be encoded
similarly in the case of fixed parameters.
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4.5 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is a
language representation model introduced by Google in 2018 [13]. The authors solved
the problem of the traditional language models being unidirectional, despite the lan-
guage understanding being bidirectional. The model created a big stir since it obtained
state-of-the-art results on eleven NLP tasks at that time. Another reason was that the
pre-trained models and the libraries were made publicly available.

The authors train the model in two steps. First, they pre-train the model on unlabeled
data from multiple tasks. Afterward, the model is initialized with pre-trained parameters
and fine-tuned using labeled data for the specific task. It should be pointed out that the
pre-trained parameters are the same for each task. That goes hand in hand with the fact
that BERT architecture is unified across different tasks.

The model architecture itself is just a stack of bidirectional Transformer encoders
based on the implementation described Section 4.4.

To tackle multiple NLP tasks with one model, the authors needed to come with an
input representation that is able to represent both a single sentence or a pair of sentences
in one token sequence. An input sentence which is an arbitrary span of contiguous text,
is encoded by WordPiece embeddings introduced in [39]. They use 30000 token vocab-
ulary. A special classification token ([CLS]) is at the beginning of every input sequence.
The purpose of the [CLS] token is to embed the information about the whole input se-
quence in the final hidden state. In case the sequence is a sequence pair, the sentences
are separated by a special separation token ([SEP]). Moreover, a learned embedding in-
dicating whether the token belongs to either sentence A or B is added to each token. The
final representation of a token is given by a sum of the token, segment, and position
embedding.

Figure 4.9: Bert input representation [13]

4.5.1 Pre-training

Instead of using traditional left-to-right or right-to-left language models, authors pre-
trained BERT using two unsupervised tasks. The first one, which we will be more in-
terested in, is masked language modeling. The second unsupervised task is the next
sentence prediction. The pre-training is done on unlabeled data from BooksCorpus and
English Wikipedia.

Masked Language Model (MLM)
In the masked language modeling task, a random percentage of the input tokens is
masked. Later on, the goal is to predict the masked tokens. During the training, 15%
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of the input token positions is selected. Out of these positions, 80% of the positions are
replaced by the [MASK] token, 10% is replaced by the random token and the last 10%
remains unchanged. Why did the authors choose to replace using this scheme?

The reason not to replace only with a [MASK] token is mitigating that the [MASK]
should not appear during fine-tuning unless we are fine-tuning the language model.
Moreover, the model would likely produce meaningful token representations only for
masked words but not for the non-masked ones. Now, if we would replace only by
[MASK] token and random word token, then the model would never believe that the
observed word is correct. On the other hand, if we would replace only by [MASK] token
or kept observed token instead, then the model would not have to rely on context.

Next Sentence Prediction (NSP)
In the next sentence prediction task, the authors try to capture the relationship between
two sentences. The data for the task itself are generated from a monolingual corpus. The
procedure is the following, they choose two sentences A and B as a training example. In
half of the cases, sentence B is the sentence that follows sentence A in a training corpus.
In the other half of the cases, it is a random sentence from the corpus. The authors show
that despite the task simplicity, the pre-training on NSP is beneficial to both Question
Answering and Natural Language Inference tasks which are based on understanding the
relationship between two sentences.

4.5.2 Fine-tuning

Considering the fine-tuning part, there is nothing special. The procedure is pretty straight-
forward and requires only plugging in the task-specific inputs and outputs into BERT
and fine-tuning the parameters of the network. Leveraging transfer learning by using the
BERT pre-trained models and fine-tuning them was made very easy by authors. More-
over, since fine-tuning requires only the addition of an untrained feed-forward layer on
top of the pre-trained BERT, it is considered inexpensive compared to the pre-training.
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Problem Statement

5.1 Problem Formulation

A conventional formulation of an inflectional word-form prediction task is to predict the
target word-form given the base-form and morpho-syntactic tags.

The example input in Czech when considering the traditional approach could look
something like this:

“Praha <Noun><F><Sg><Locative>”.

Where string “Praha” is the Czech base form of the word Prague, and the accompanying
morpho-syntactic tags describe part-of-speech, gender, number, and case.

While the traditional approaches have been proven to work well and have been help-
ful in tasks like machine translation or text correction, most of the inflection prediction
models were highly dependent on the handcrafted input features or rules Chapter 2.
However, these handcrafted input features or rules are often quite challenging to create
and can look unintuitive for non-expert people outside of the target field. Under these
circumstances, the natural question that arises is: Would the inflection generation work
without relying on handcrafted input features or rules?

With the previously mentioned question in mind, we aim to tackle inflection predic-
tion in a novel way as a context-aware prediction of inflectional word-forms. As the thesis
topic suggests, we aim to derive the target word-form from the context of the sentence
without any additional features or rules.

The example input in Czech should be:

“Byl jsem v #Praha”.

Which in translation means:
“I was in #Prague”.

Here, we again want to inflect the Czech base form “Praha”, but this time instead of the
morpho-syntactic features, we have access to the context of the sentence.
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5.2 Use cases

As mentioned earlier in Chapter 2, the traditional use cases of inflection prediction are
mainly in machine translation when the target language is morphologically rich. Never-
theless, we intend to utilize the inflection prediction in a different way.

In our case, the objective is to utilize inflection prediction in conversational applica-
tions. Specifically, the Czech conversational applications since in weakly inflected En-
glish, the usage of the system would be less common, mainly because the English words
do not have such a high number of different word-forms.

In conversational applications, there are many cases when the system extracted enti-
ties from the previous turns of conversation with a user by applying named-entity recog-
nition (NER) [25]. The extracted entity mentions are names of essential elements in a
text, like names of people, places, brands, and organizations.

With regard to the user side of interaction with the conversational app, it is undoubt-
edly positive to have a system that listens and reacts to the things that the user said. To
put it another way, talking about recognized entity mentions makes the conversational
system more engaging. Moreover, the conversational flow sounds more natural than if we
would talk about predefined random things in the conversational system, which might
be irrelevant for the user.

If we consider the side of the conversational system, we concluded that it is beneficial
to use previously recognized entities. Let us imagine that we have recognized an entity
Matrix that refers to the movie. Moreover, let us assume that we have prepared multiple
dialogues about the topic of movies. Given the recognized movie entity, the desired use
case is to use the correctly inflected entity in the various movie dialogues where the
context differs.

On a similar note, another case where inflection prediction could be beneficial in
conversational applications is having a predefined sentence where only one word varies.
For example, let us take an example sentence:

“[slovo] den.”

Which in translation means:
“Have a [word] day.”

In this example, the variable [word] could be any positive adjective like good, nice,
great, etc. As a consequence, while in English, the adjectives are not inflective except for
degrees of comparison, in Czech, adjectives can take many forms even when being in one
degree. This is precisely the place where the context-aware inflectional prediction model
could come in handy.

Outside of conversational applications, another use case could be text correction. This
use case is somewhat secondary and is inspired by my own experience. It is not unusual
that foreigners say or write sentences where they do not inflect some of the words and
say or write base forms instead of the correctly inflected word-forms. Thus, the inflection
correction model could serve as an alternative to the existing language models.
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5.3 Motivation

The motivation behind selecting a context-aware approach to the inflection prediction
problem is the rise of the Transformer architecture in the field of NLP Section 4.4. Thanks
to Transformers, encoding of context and long-term dependencies has advanced consid-
erably compared to the previous age of recurrent networks.

Moreover, leveraging transfer learning methods together with large-scale Transformer
language models that helped researchers achieve state-of-the-art results in multiple NLP
tasks was made effortless and accessible thanks to the public libraries and a large number
of publicly available pre-trained models [38].

Despite the proven power of Transformers, relying solely on the sentence context
should make the prediction task itself more complex. Considering this, we still think that
sentences should generally contain enough information to derive the correct word-form.
But of course, there might be cases when sentence context is insufficient or ambiguous,
especially if the input sentence is short.

Considering the insufficient or ambiguous instances in our conversational application
use case, one could oppose that the conversational app designers can simply input the
target word-forms for each context sentence. However, the aim is to make the inputs
reusable for multiple context sentences.

For example, it is not hard to see that positive adjectives can be used in multiple
context sentences. Similarly, various verbs representing sports activities can be present
in context sentences about sports. By that, we remove as much unnecessary human work
for designers. In the end, requiring inputting target word-forms would be even worse
than requiring inputting morpho-syntactic features, which we already wanted to avoid.

Not considering the context-aware part of the selected research topic, a personal rea-
son for choosing the general topic of inflection is seeing people struggle with Czech in-
flection. The general belief is that foreigners have difficulty learning the Czech language.
However, we argue that it is not only the case for foreigners. We believe that there are
also native speakers struggling with inflection in the Czech language, at least during
primary and secondary school education. Moreover, concerning the general level of the
Czech language in recent years, it seems to decline since the younger generation tends to
include anglicisms in daily conversations.
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Methods

6.1 Lemmatized Language Model Approach

In our approach, we used BERT architecture described in Section 4.5 that achieved state-
of-the-art results on various NLP tasks [13]. In particular, we were inspired by the
masked language model, where the model is trained to predict a word corresponding
to the [MASK] token. For example, the output of a pre-trained BERT base model for an
English input

“I live in [MASK]”.

is token “Brooklyn”.
As we can see in this example, BERT learned to predict the name of a city that fits

into the context. However, there is no straightforward way to influence the model’s ex-
act choice of the city that it would predict. We aim to influence the model decision by
inputting lemma as a base form instead of masking the word. We will refer to the model
as lemmatized language model (LLM).

The model itself is a BERT Czech language model trained from scratch. However,
instead of the masked input format like

“I live in [MASK]”.

the model accepts input like
“I live in #Prague”.

where “#Prague” is the lemma.
Given the lemma, we assume that the model will have an easier time learning how to

predict the correct word-form than the MLM since it has additional information about
how the target word should look. Therefore, the only thing left for a model is to predict
the correct word-form of a given lemma based on the learned representation of sentence
context.

6.1.1 Dataset Creation

For a dataset, we have chosen the Czech part of the OpenSubtitles dataset [22]. OpenSub-
tlitles dataset is a collection of parallel corpora. The source is similarly named database
of movie and TV subtitles. It includes 2.6 billion sentences across more than 60 lan-
guages. The Czech corpus that we chose contains 135.9 million sentences. We split the
dataset into training, validation, and test splits with 110, 15, and 10 million sentences,
respectively. The sample of the OpenSubtitles dataset can be seen in Table 6.1.

Additionally to the OpenSubtitles dataset, we cooperated with linguists that created
a small testing dataset for human evaluation. The dataset tries to cover all types of in-
flection ranging from nouns, adjectives, pronouns, numerals to verbs. The intended use
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Table 6.1: Sample of OpenSubtitles data

Myslíš , že jen tak kecám .
Jestli budeš dál psát ty historky, tak lidé v ty nesmysly uvěří a zpanikaří .
Doufám , že na příští akci nebudete chybět .
Je vážně milý a přátelský .
Nazdárek , Astrid .
Doufal jsem , že jsme se poučili z našich chyb , ale zdá se , že někteří z nás se nepoučili .
Až ti nadhodím , sleduj míček .
Kolik různých jazyků existuje ?
Musíš to vidět bez toho všeho .
Klienti si můžou vybrat , co chtějí ... a kohokoliv chtějí .

is to get a better insight into what kind of mistakes the model makes and whether it can
handle all types of inflection.

Since the datasets themselves do not contain lemmas, we need to lemmatize the data
first. For that purpose, we used MorphoDiTa [35] a morphological dictionary and tagger.
It is an open-source tool for morphological analysis of natural language texts. It can be
used for morphological analysis, morphological generation, tagging, and tokenization.

We choose to lemmatize the whole datasets at once and then pick the lemmas instead
of lemmatizing only the inputs that are used for training since the total size of datasets
is quite large, and lemmatization is time-consuming. The lemmatized sample is shown
in The sample of the dataset can be seen in Table 6.2.

Table 6.2: Lemmatized sample of OpenSubtitles data

myslit , že jen tak kecat .
jestli být dál psát ten historka , tak člověk v ten nesmysl uvěřit a zpanikařit .
doufat , že na příští akce nebýt chybět .
být vážně milý a přátelský . .
nazdárek , Astrid .
doufat být , že být se poučit z můj chyba , ale zdát se , že některý z já se nepoučit .
až ty nadhodit , sledovat míček .
kolik různý jazyk existovat ?
muset ten vidět bez ten všechen .
klient se moci vybrat , co chtít . . . a kdokoli chtít .

However, when we were designing the system, we found out that classical lemmatiza-
tion could cause problems. Specifically, we were thinking of degrees of comparisons that
relate to adjectives and adverbs. If we would use standard lemmatization, then the base
form of "dobrý"("good"),"lepší"("better"), "nejlepší"("best") would in all cases be positive
degree "dobrý"("good"). This example illustrates that the standard lemmatization would
lose the information about the degree of comparison.

Therefore, if we would had Czech input

"Dnes je #dobrý den."

meaning
"Today is #good day."

the model would have no additional information about the degree of comparison of the
target word-form.
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We try to tackle the issue by returning custom “lemma” that represents a target ad-
jective or adverb. While there is only one grammatical variation of an adjective or an
adverb in the particular degree of comparison in English, it is not the case in the Czech
language.

Moreover, a similar issue with context ambiguity holds for verbs and their negations.
“To be, or not to be.” That could be the question not only for Hamlet but also for our pre-
diction model in the case of the verb inflection prediction. With this in mind, we also
try to customize the verb lemmatization and return the lemma prepended with a prefix
representing negation so that the model gains additional information.

6.1.2 Implementation Details

In this part, we will briefly describe the implementation details of the first proposed
model. As we are working with Transformer architecture [37] namely with BERT [13], we
decided to use widely-used open-source library called HuggingFace Transformers [38].

Firstly, we needed to train our own tokenizer since we are training a language model
from scratch. The reason behind not using a pre-trained model is that we could not find
any model that trained on the Czech language outside of the multilingual BERT model,
which seemed too large. Because of this, we trained a byte-level BPE tokenizer on the
whole OpenSubtitles Czech dataset.

Afterward, we needed to make some adjustments since our task is not the same as the
original masked language task. In the original BERT pre-trained task, 15% of tokens are
either masked or replaced by a random token or left as they were. In our task, we also
chose 15% of tokens. However, we replaced them with lemmas so that the model can
learn sentence representation with additional information about the lemma.

Another tweak that had to be made was so-called whole-word masking. Originally,
it could happen that during the masking, only a part of a multi-token word would be
masked, leaving the rest of the word pieces visible. Seeing a part of a word made the
prediction of a mask token easier. In our case, it would make no sense if it would happen
that the target affix token would remain visible for prediction. Therefore, whole-word
masking was forced.

Since we were training a language model from scratch, a large dataset was needed
for the model to learn. However, we could not use standard data loaders with a sizeable
dataset since the data would not fit into the memory. For that reason, we stored both
lemmatized sentences and inflected sentences in files and wrote a custom data loader
that lazily reads the data.

Other than that, we used the standard HuggingFace Transformers Trainer class that is
responsible for the training loop. We used the default loss for language models, which is
negative log-likelihood. The model was trained on two V100 GPUs with a total memory
of 32 GB on the CIIRC computational cluster. Thanks to the size of the memory, we were
able to use a batch size of 512. However, the training still took about 4 days because of
the training data size.

6.1.3 Automatic Evaluation

For the automatic evaluation of our task, we use the standard precision, recall, f1 score,
and accuracy metrics. What interests us is whether the model learned when to inflect
and when not to and, of course, whether it inflects correctly. In our task, we interpret T P
as the number of correctly predicted word-forms when we were supposed to inflect. On
the other hand, FP is the number of inflected cases that should not have been inflected.
Furthermore, TN is the number of cases where the predicted word-form was the same as
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Figure 6.1: Results of Sigmorphon 2018 Task 2 [9]

the input lemma, and finally, FN is the number of cases where we predicted lemma, but
the target form should have been different.

• P recision = T P
T P+FP

• Recall = T P
T P+FN

• F1 = 2 · P recision·RecallP recision+Recall

• Accuracy = T P+TN
T P+FP+TN+FN

We evaluated the LLM model on the test split of the OpenSubtitles dataset that con-
sists of 10 million sentences. Furthermore, we tested the baseline approach’s perfor-
mance that copies the input lemma to the output.

Table 6.3: LLM Automatic Evaluation

Model Precision Recall F1 Accuracy
LLM 65.36 39.95 49.59 56.54
BASE - - - 46.49

If we take a look at the Table 6.3, the resulting metrics do not look the best. While the
model outperforms the lemma copying baseline, one would hope that it would do so in
a more sizeable fashion. The main problem seems to be a low recall which signifies that
the model often predicts lemma when it should inflect. To put it another way, it seems
like the model rather struggles with learning which words to inflect and which not, than
with correctly inflecting when it already decides to inflect.

Another insight that we could get is comparing with the results closest task that we
could have found, the Sigmorphon 2018 inflection in context [9]. In Sigmorphon context
inflection tackle similar task however in different languages. Besides, they evaluate their
systems only with respect to the inflection of nouns, verbs, and adjectives only.

In Figure 6.1, we can observe that the best result in Russian, which is representative of
the Slavic language, also reaches the accuracy of 56% in a high data setting with 100000
tokens. Again, it should be noted that the data and the evaluation are both different.
Therefore, this comparison cannot be taken as seriously.
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6.1.4 Human Evaluation

We also manually evaluated the LLM on the evaluation dataset created by linguists. Out
of the 100 sentences, there were 23 mistakes if we would consider the exact labels. The
77% accuracy is not bad, but it should be noted that the dataset is relatively small and
was made mainly for the insight into how the model works.

With that mind, if we would also consider the other labels possible for the similar
context, then the number of mistakes would decrease to 16 mistakes since 6 of the cases
can be considered debatable as can be seen in Table 6.6.

Firstly, we will look at the correctly evaluated sentences. The positive fact is that the
model is capable of predicting correct target word-forms for all inflective parts of speech.
The examples are shown in Table 6.4.

Table 6.4: Examples of correctly predicted sentences

Input sentence Target form Part of speech
Byl jsem v #Praha Praze noun
Co je v #dům není pro mě domě noun
Po dvoře honila #strakatý krávu strakatou adjective
Dali jsme si #španělský ptáčka španělského adjective
Je #já zima mi pronoun
#já se to nějak nezdá Mně pronoun
Skončila jsem na #třetí místě třetím numeral
Tento rok vyrazila už na #druhý dovolenou druhou numeral
Včera mi #volat moje kamarádka Radka volala verb
To #být moje boty jsou verb

If we take a closer look, we can see that the model seems to handle quite difficult
inflections. In the first example where “Praha” inflects to “Praze”, we see that model
learned the change of phoneme h to z. Moreover, while the inflection of adjectives and
numerals seems pretty standard, the inflection of pronouns seems rather challenging.
This is especially true if we check how a pronoun “já” can be inflected into multiple
word-forms with no signs of regularity. Nevertheless, the LLM still manages to tackle
even this challenge. The last part of the speech left to discuss is verbs. The irregular verb
“být” is inflected correctly, and also, the verb “volat” in the other example is inflected in
the correct tense based on the context sentence.

Although LLM somehow learned various inflections, we are mainly interested in the
model’s mistakes. All incorrect examples are shown in Table 6.5.

The first thing that caught our attention is that many nouns are inflected incorrectly,
even though we previously showed that LLM could inflect nouns. In the end, inflecting
lemma #princezna to princezně does not seem that difficult since it is only a change of
one letter. On the other hand, inflecting lemma #dům to domě seems more challenging,
yet it was done correctly. So, where exactly is the problem?

Instead of finding the answer when looking at other noun inflections, we found it
when checking the third example where adjective #horký should have been inflected to
horkého. The first clue is that the target affix #ého was not present in the possibilities
at all. Another clue was that a target form has more syllables than a lemma. However,
it is rather an intuitive clue since the tokenizer does not work based on the number of
syllables.

One could guess the problem lies in the fact that the target form has different tokens
than the inputted lemma. Since the LLM model predicts which tokens most probably fit
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Table 6.5: Examples of incorrectly predicted sentences

Input sentence Predicted form Target form
Babička mi vyprávěla pohádku o pyšné #princezna princezny princezně
V ruce držela šálek #horký čaje horké horkého
Kouřil #jedna za druhou jedna jednu
Bez #svůj mobilu se neobejdu. svýho svého
Premiér vyzval k #podpora ostatní země EU podpory podpoře
Maminka upekla ovocný koláč s #drobenka drobenky drobenkou
Tištěné noviny ztrácí na #význam význam významu
jeden z #my my nás
Zatluč to #kladivo kladivo kladivem
Panenka #vsítit dloubákem rozhodující gól a stadion propukl v jásot vsítila vsítil
Přišel jsem, viděl jsem, #zvítězit jsem zvítězit zvítězil
#Honzův plány vůbec nemá cenu se zabývat Honzovy Honzovými
Tatínek si koupil #kožený boty kožený kožené
dokonce jsem získala i pár nových #funkce funkce funkcí
Už se těším, jak ji #překvapit dárkem, který jsem jí koupil překvapit překvapím

Table 6.6: Debatable sentences for Lemmatized Language Model

Input sentence Predicted form Target form
Včera jsme s #kamarád vyrazili na houby kamarády kamarádem
Vyrazili jsme za #oni na návštěvu ním nimi
V řece hromadně #uhynout ryby uhynou uhynuly
Výběr #žárovka může mít vliv na zdraví žárovek žárovky
Někdy bych ale radši #jít hrát tenis šel šla
mně osobně ananas teda nijak #nevadit nevadil nevadí
nejsem vůbec moc #šikovný šikovný šikovná
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the context in place of lemmatized tokens, there is no way for this model to predict addi-
tional tokens outside of the lemmatized tokens. Similarly, the model will also struggle in
the opposite case when the lemma would have more tokens than the target form, which
should be very rare but possible.

There are other problems not as severe as the one just mentioned but still to be noted.
One of the problems directly follows from the nature of the model relying only on the
sentence context. As we can see in the table, there are multiple cases where there could be
various target word-forms just based on the sentence context. However, it seems that the
model tends to prefer masculine gender instead of a feminine. The examples of this phe-
nomena are #jít to šel instead of šla and similarly in the case of lemma #šikovný. Another
problem seems to be that model learns some ungrammatical word-form inflections.
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6.2 Lemmatized Sequence to Sequence Approach

Despite LLM having a solid performance, the major flaw tied to the different number
of tokens of lemma and target word-form needs to be solved. A natural solution seems
to be a sequence-to-sequence model. However, training a sequence-to-sequence model
requires longer training compared to just training a language model using BERT.

Since we needed 2 V100 GPUs and 32 GB of memory just for training LLM from
scratch, we tried to avoid training the sequence-to-sequence model from scratch, as it
would likely take a longer time to train, and it was not simple to get the computational
resources. Instead, we tried to use pre-trained models to save time and leverage transfer
learning.

The decision of using pre-trained checkpoints for sequence-to-sequence tasks is also
based on the article that describes the advantages of initializing encoder-decoder mod-
els with pre-trained checkpoints [31]. In their work, they introduced Transformer-based
sequence-to-sequence models compatible with publicly available pre-trained BERT [13],
GPT-2 [30] and RoBERTa [23] checkpoints. Based on their experiments, a pre-trained
encoder is an essential component for the successful encoder-decoder model. Moreover,
their models resulted in new state-of-the-art results on Machine Translation, Text Sum-
marization, Sentence Splitting, and Sentence Fusion.

The model itself is a bert2bert model [31] and we will refer to it as lemmatized
sequence-to-sequence model (LS2S). It uses pre-trained BERT for both the encoder and
the decoder component. Since the target language is Czech, we used a pre-trained BERT
multilingual cased checkpoint which is also trained on the Czech language. Thanks to
that, we avoid computationally expensive training of the Czech language model. As a
consequence, we can focus on the inflection generation itself.

Similarly to the Lemmatized Language Model approach, we want the model to encode
the information about the input lemma. However, this time we do it differently. The
example input representation looks like:

“I [SOL] be [EOL] John.”,

where “[SOL]” and “[EOL]”, which stand for the start and end of the lemma, respectively.
The aim is to give the model a way to encode lemmas of the various token length.

We hope that “[SOL]” and “[EOL]” tokens for lemmas will work on the same principle
like “[CLS]” token for sentences in BERT. We suppose that the model could possibly
learn the representation of context on the left of the lemma in the output corresponding
to “[SOL]” token, and the right context representation in the output corresponding to
“[EOL]” token. Moreover, the model still should have a full token representation of the
lemma present in between “[SOL]” and “[EOL]” tokens.

6.2.1 Dataset Creation

Another problem that we found out during the hand evaluation of the first approach was
possibly the OpenSubtitles dataset. We observed that the model learned ungrammati-
cal word-forms in some cases, which might have been because of the language used in
movies and TV series. Moreover, training a sequence-to-sequence model on the same
amount of data would be practically impossible for us because of the computational re-
sources. Therefore, we tried to find a more suitable Czech dataset.

In the end, we decided to use Czech Grammar Agreement Dataset for Evaluation of
Language Models by [5]. The AGREE dataset contains 10 million Czech sentences with
marked verbs in the past tense. The original purpose of the dataset is to predict the
correct form of the verb in past tense based on the sentence context. As we can see, the
task is somehow related to our context-aware word-form prediction. The difference is
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that we want to predict word-forms for all inflectable parts of speech while also learning
which words not to inflect, whereas the authors of AGREE dataset were focused only on
verbs in the past tense. Despite this difference, we think that having a dataset designated
for a related task could be helpful for the training of our model.

Similarly to the OpenSubtitles dataset, we need to lemmatize all sentences first. More-
over, we need to remove the marks from the marked verbs to create standard sentences.
Afterward, we randomly choose a word to be selected as a base-form. Furthermore, we
prepend and append the special “[SOL]” and “[EOL]” tokens to the selected word. Af-
ter this, the preprocessing of the chosen base-form is finished, and the remainder of the
sentence serves as context for prediction again.

6.2.2 Implementation Details

Following with the implementation details of lemmatized sequence-to-sequence model,
we again worked with the HuggingFace Transformers library [38]. The library con-
tains EncoderDecoder class that is suitable for initializing a working with sequence-to-
sequence models. It can be used to initialize the encoder component with any pre-trained
autoencoding model. Similarly, any pre-trained autoregressive model can initialize the
decoder.

We initialized both components of the encoder-decoder model with pre-trained BERT
multilingual cased checkpoints [13]. Therefore, compared to the LLM approach, there
was no need to train a tokenizer from scratch since we could use the pre-trained one from
BERT multilingual model. The input sentence is encoded to the sequence of maximum
length of 64 tokens. The encoded sequence serves as an input to the decoder which
output is limited to the maximum length of 8 tokens. Like this, we should be able to
cover most of the input sentences and output word-forms with respect to the number
of tokens while keeping the memory requirements as low as possible for more efficient
training.

We again had to use a custom data loader that loads the inputs and labels lazily from
preprocessed input files. The rest of the training loop is left again to the Trainer class.
During the training, we again used the negative log-likelihood as a loss function. Fur-
thermore, we applied early stopping with the patience of 3.

This time we trained the model on one V100 GPU with a memory of 16 GB. The
computational resources allowed us to use a batch of 128 sentences. With these settings,
the training took approximately two days.

6.2.3 Automatic Evaluation

Similarly to the Lemmatized Language Approach case, we also performed an automatic
evaluation of Lemmatized Sequence to Sequence model. However, while we used sim-
ilar metrics, we used the evaluation split of the AGREE dataset consisting of 996 sen-
tences [5].

Table 6.7: LLM Automatic Evaluation

Model Precision Recall F1 Accuracy
LS2S 97.71 93.93 95.78 95.48
BASE - - - 45.38

Contrary to the automatic results of the previous model, the resulting metrics of the
Lemmatized Sequence-to-Sequence Model on the AGREE dataset showed in Table 6.7
look much better.
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However, the only thing that we can take from these results is that the model learned
well on AGREE dataset specifically. There is not much else to deduce since the evaluation
split of the AGREE dataset differs from the evaluation split of the OpenSubtitles dataset
by four orders of magnitude. Moreover, the size of the evaluation split of the OpenSubti-
tles dataset is similar to the whole training size of AGREE dataset. Thus, we hope to gain
more insight into the model in Human Evaluation.

6.2.4 Human Evaluation

In human evaluation on the dataset constructed by linguists, the LS2S model performed
worse than its counterpart. Considering the strict labels, the model made 40 mistakes
and therefore reached 60% accuracy.

Thinking about the positives first, the LS2S model managed to learn some correct
word-forms, which the previous approach could not handle because of the different to-
ken number of the input and target form. For example, the model returned “horkého”
given the input “V ruce držela šálek #horký čaje”. This is a positive fact as the primary
motivation for the sequential approach was to manage these kinds of problems.

On the other hand, the model made significantly more mistakes. Even if we would
subtract the 11 debatable cases, which can be seen in Table 6.8, the model still obviously
struggles with correct inflection more than the LLM. The mistakes are shown in Table 6.9

Considering the controversial cases, most of them are verbs in a different tense than
the target verb inflections. However, that is because the AGREE dataset contains verbs in
the past tense for the sake of the subject-predicate agreement task.

However, moving back to the undisputable mistakes, the new model shows several
cases that predict different words than the lemma suggests. For example, in some cases,
it is the following word in the context, but on the other hand, in some cases, it seems like
a random word.

Furthermore, the model seems to struggle much more on all the parts of speech ex-
cept for verbs, especially with the complex inflection of Czech pronouns. We again at-
tribute this to the fact that initially, the AGREE dataset was built for verb inflection. With
that in mind, it seems like either the randomness during the base-form picking was not
sufficient, or the dataset simply does not contain enough examples for various types of
inflections.

Table 6.8: Debatable sentences for Lemmatized Sequence-to-Sequence Model

Input sentence Predicted form Target form
docela mě to #bavit bavilo baví
moje maminka nerada #vařit vařila vaří
i když taková diskuze také někdy #trvat poměrně dlouho trvala trvá
jiní lidé ho naopak #milovat milovali milují
všechno teď #běžet mnohem rychleji běželo šla
na druhou stranu #jíst trochu méně jedl jím
zvlášť v létě vypiji vždy hodně #aperol aperolů aperolu
Já už tu na tebe #čekat hodinu čekal čekám
Natrhala jsem kvítí na #louka loukách louce
Včera jsme s #kamarád vyrazili na houby kamarády kamarádem
Už se těším, jak ji #překvapit dárkem, který jsem jí koupil překvapí překvapím
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Table 6.9: Incorrect sentences for Lemmatized Sequence-to-Sequence Model

Input sentence Predicted form Target form
Premiér vyzval k #podpora ostatní země EU podporám podpoře
Tento rok vyrazila už na #druhý dovolenou druhé druhou
Stala se obětí #domácí násilí domácích domácího
Kvůli #vážný nemoci musí držet přísnou dietu vážnému vážné
#Granada je krásné město Granadě Granada
Zítra půjdeme do #Alhambra Alhambra Alhambry
Jeden z #my my já
Dali jsme si #španělský ptáčka španělský španělského
Je #já zima zima mi
To #být moje boty je jsou
Zatluč to #kladivo kladivo kladivem
Nakrájej nožem #ten bramboru bral tu
#ten květiny potřebujou zalít to ty
#já se to nějak nezdá mě mně
Neviděl jsem #on už mnoho let jich ho
Za koho #já máš? máš mě
Zakopl jsem v předsíni o #tátův boty tátově tátovy
#Honzův plány vůbec nemá cenu se zabývat Honzovou Honzovy
Tatínek si koupil #kožený boty kožený kožené
Nekoukej na #ona takhle ní ni
Stala se #padesátý držitelkou ceny padesátých padesátou
#nikdo se nic nestalo nikdo nikomu
Tenhle rok #být ale pořád zima jsme je
Mnoho lidí nesnáší ananas na #pizza pizzu pizze
Ale takové diskuze zaberou vždy hodně #čas časů času
Podle mě jsem vytvořila opravdu #báječný věty báječný báječné
Proto studuju na #univerzita univerzitách univerzitě
Někdy bych ale radši #jít hrát tenis jít šla
Když #můj maminka nerada vaří můj moje
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Conclusion

The aim of our thesis was to create a context-aware model for the prediction of inflec-
tional word-forms. This objective was motivated by the vision of a user-friendly inflec-
tional system without any need for hand-crafted features. Moreover, the context-aware
approach was supported by the recent success of the Transformer and its excellent acces-
sibility, as we tried to rely solely on the context encoding for the prediction.

To better understand the task of inflectional word-form prediction, we first researched
current state-of-the-art methods. Afterward, we studied the linguistic concepts needed to
carry out the linguistically oriented research task successfully. Furthermore, we analyzed
fundamental technical ideas related to sequential learning. Notably, we got acquainted
with the architecture of Transformers and their use in the field of NLP.

Based on previous research, we have proposed two models that address context-aware
prediction of inflectional word-forms. Furthermore, we also prepared lemmatized Czech
datasets for training and model evaluation using MorphoDiTa.

The first model we designed was a Lemmatized Language Model. Here, we trained a
Czech language model from scratch. We took inspiration for the Lemmatized Language
Mode from the BERT Masked Language Model. However, instead of predicting the value
of the masked inputs using the context of surrounding words, we tried to predict the
value of the lemmatized tokens. The model accepts inputs like: “I #be John.”, and the
goal is to inflect base-form “#be” to the target form “am”.

The Lematized Language Model was trained and evaluated on Czech lemmatized
OpenSubtitles data which consists of 135.9 million sentences. We measured the auto-
matic evaluation on the evaluation split formed of 10 million sentences. While the base-
line copying model reached the accuracy of 46.49%, the resulting accuracy of LLM was
56.54%, which suggested room for improvement for the LLM model despite outperform-
ing the baseline. Solely based on the metrics, we could conclude that the model often
predicts lemma when it should inflect. However, deeper insight into the model was pro-
vided by human evaluation.

In human evaluation, we performed analysis on the small dataset constructed by lin-
guists. We found out that the model inflected surprisingly well and achieved 77% ac-
curacy on these data. On the other hand, we found a major issue that the model could
not predict the cases when the target form has different tokens than the inputted lemma.
Furthermore, we found more minor problems like the ambiguity of the context and bias
of the model towards specific grammatical categories.

As a follow-up to the first model and the found issues, we suggested a second ap-
proach. Since the main problem was a different token length of base-forms and tar-
gets, we decided that the possible solution could be a lemmatized sequence-to-sequence
model. The model itself is a bert2bert model where a pre-trained BERT checkpoint ini-
tialized both encoder and decoder. Specifically, we used a pre-trained BERT multilingual
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model trained on 104 languages, including Czech, instead of training from scratch like
in the previous case. The model also differs in the input formatting, which we can see
in the example input : “I [SOL] be [EOL] John.”, where “[SOL]” and “[EOL]” are special
tokens denoting the start and the end of lemma.

The training and automatic evaluation of the Lemmatized Sequence-to-Sequence model
was performed on lemmatized Czech Agreement dataset, which was originally a dataset
for the related task of grammatical alignment.

The results of the automatic evaluation showed a surprisingly high accuracy of 95.48%.
However, we could only conclude LS2S model learned well on the AGREE data. Other
than that, we could not make any conclusions as the size of the evaluation split of AGREE
dataset differs from the evaluation split of the OpenSubtitles dataset by four orders of
magnitude.

Our assumption that the model learned well only on AGREE data was confirmed dur-
ing the human evaluation, where the LS2S performed worse than its counterpart. While
the model was capable of solving the cases when the target form has different tokens than
the inputted lemma, it exhibited multiple other mistakes. Notably, the model showed
several cases when it predicted different words than the lemma suggests. Furthermore,
the model seemed to struggle more with all the parts of speech except for verbs.

Overall, there was a notable difference between automatic evaluation and human
evaluation. There were several factors that influenced that. One of them was the small
size of the human evaluation dataset compared to the size of automatic evaluation datasets.
Another was the fact that in human evaluation, we focused specifically on certain parts of
speech like nouns, pronouns, and verbs, while in the original training setting, the model
was supposed to learn whether to inflect before learning how to inflect.

As future work, we believe that changing the random masking for choosing the base-
form would improve the performance of the systems. For example, we could examine
POS tags of the words to create a balanced dataset, or we could focus specifically on
certain types of inflections.

50



Bibliography

[1] R. Adam et al. Morfologie. Univerzita Karlova v Praze, Nakladatelství Karolinum,
2015.

[2] R. Aharoni and Y. Goldberg. Morphological inflection generation with hard mono-
tonic attention. arXiv preprint arXiv:1611.01487, 2016.

[3] M. Aronoff and K. Fudeman. What is morphology?, volume 8. John Wiley & Sons,
2011.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] V. Baisa. Czech grammar agreement dataset for evaluation of language models. In
RASLAN, pages 63–67, 2016.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[7] G. G. Chowdhury. Natural language processing. Annual review of information science
and technology, 37(1):51–89, 2003.

[8] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[9] R. Cotterell, C. Kirov, J. Sylak-Glassman, G. Walther, E. Vylomova, A. D. McCarthy,
K. Kann, S. J. Mielke, G. Nicolai, M. Silfverberg, et al. The conll–sigmorphon 2018
shared task: Universal morphological reinflection. arXiv preprint arXiv:1810.07125,
2018.

[10] F. Deloche. Gru unit, Apr 2018. [Online; accessed 24-April-2018].

[11] F. Deloche. Lstm unit, Apr 2018. [Online; accessed 24-April-2018].

[12] F. Deloche. Recurrent neural network, Apr 2018. [Online; accessed 24-April-2018].

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[14] G. Durrett and J. DeNero. Supervised learning of complete morphological
paradigms. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
1185–1195, Atlanta, Georgia, June 2013. Association for Computational Linguis-
tics.

51



BIBLIOGRAPHY

[15] M. Faruqui, Y. Tsvetkov, G. Neubig, and C. Dyer. Morphological inflec-
tion generation using character sequence to sequence learning. arXiv preprint
arXiv:1512.06110, 2015.

[16] A. Fraser, M. Weller, A. Cahill, and F. Cap. Modeling inflection and word-formation
in smt. In Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics, pages 664–674, 2012.

[17] S. Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[19] M. Hulden, M. Forsberg, and M. Ahlberg. Semi-supervised learning of morpholog-
ical paradigms and lexicons. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 569–578, 2014.

[20] P. Koehn. Statistical machine translation. Cambridge University Press, 2009.

[21] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

[22] P. Lison and J. Tiedemann. Opensubtitles2016: Extracting large parallel corpora
from movie and tv subtitles. 2016.

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[24] M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[25] D. Nadeau and S. Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26, 2007.

[26] G. Nicolai, C. Cherry, and G. Kondrak. Inflection generation as discriminative string
transduction. In Proceedings of the 2015 conference of the North American chapter of
the association for computational linguistics: human language technologies, pages 922–
931, 2015.

[27] J. Nouza, J. Zdansky, P. Cerva, and J. Silovsky. Challenges in speech processing
of slavic languages (case studies in speech recognition of czech and slovak). In
Development of Multimodal Interfaces: Active Listening and Synchrony, pages 225–
241. Springer, 2010.

[28] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. PMLR,
2013.

[29] M. Pravdová and I. Svobodová. Akademická příručka českého jazyka. Academia, 2014.

[30] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

52



BIBLIOGRAPHY

[31] S. Rothe, S. Narayan, and A. Severyn. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Association for Computational Linguistics,
8:264–280, 2020.

[32] H. Schmid, A. Fitschen, and U. Heid. SMOR: A German computational morphology
covering derivation, composition and inflection. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Evaluation (LREC’04), Lisbon, Portugal,
May 2004. European Language Resources Association (ELRA).

[33] H. Schütze, C. D. Manning, and P. Raghavan. Introduction to information retrieval,
volume 39. Cambridge University Press Cambridge, 2008.

[34] A. Stolcke. Bayesian learning of probabilistic language models. PhD thesis, University
of California, Berkeley, 1994.

[35] J. Straková, M. Straka, and J. Hajic. Open-source tools for morphology, lemmatiza-
tion, pos tagging and named entity recognition. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics: System Demonstrations, pages
13–18, 2014.

[36] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. arXiv preprint arXiv:1409.3215, 2014.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[38] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

[39] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

[40] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio.
Show, attend and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048–2057. PMLR, 2015.

[41] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

53


	Introduction
	Related Work
	Modeling Inflection and Word-Formation in SMT
	Inflection Generation as Discriminative String Transduction
	Table alignment
	Rule extraction
	Rule selection

	Morphological Inflection Generation Using Character Sequence to Sequence Learning
	Morphological Inflection Generation with Hard Monotonic Attention

	Linguistic concepts
	Morphology
	Stemming and Lemmatization

	Technical concepts
	Recurent Neural Networks
	Gated Recurrent Units

	Encoder-Decoder architecture
	Attention
	Global attention

	Transformer architecture
	BERT
	Pre-training
	Fine-tuning


	Problem Statement
	Problem Formulation
	Use cases
	Motivation

	Methods
	Lemmatized Language Model Approach
	Dataset Creation
	Implementation Details
	Automatic Evaluation
	Human Evaluation

	Lemmatized Sequence to Sequence Approach
	Dataset Creation
	Implementation Details
	Automatic Evaluation
	Human Evaluation


	Conclusion

